
Package: MarketMatching (via r-universe)
September 16, 2024

Type Package

Title Market Matching and Causal Impact Inference

Version 1.2.1

Date 2024-01-11

Description For a given test market find the best control markets
using time series matching and analyze the impact of an
intervention. The intervention could be a marketing event or
some other local business tactic that is being tested. The
workflow implemented in the Market Matching package utilizes
dynamic time warping (the 'dtw' package) to do the matching and
the 'CausalImpact' package to analyze the causal impact. In
fact, this package can be considered a ``workflow wrapper'' for
those two packages. In addition, if you don't have a chosen set
of test markets to match, the Market Matching package can
provide suggested test/control market pairs and pseudo
prospective power analysis (measuring causal impact at fake
interventions).

Depends R (>= 4.3.0)

License GPL (>=3)

Encoding UTF-8

URL https://github.com/klarsen1/MarketMatching

Imports ggplot2, dplyr, utils, iterators, doParallel, parallel,
foreach, reshape2, CausalImpact, tidyr, zoo, bsts, scales,
Boom, utf8, dtw

LazyData true

VignetteBuilder knitr

Suggests knitr, rmarkdown

RoxygenNote 7.2.3

Repository https://klarsen1.r-universe.dev

RemoteUrl https://github.com/klarsen1/marketmatching

RemoteRef HEAD

RemoteSha 85cdb5bbd2c21062fdf5247d321cf1493b841e69

1

https://github.com/klarsen1/MarketMatching

2 best_matches

Contents
best_matches . 2
inference . 4
MarketMatching . 7
roll_up_optimal_pairs . 9
test_fake_lift . 11
weather . 13

Index 14

best_matches For each market, find the best matching control market

Description

best_matches finds the best matching control markets for each market in the dataset using dynamic
time warping (dtw package). The algorithm simply loops through all viable candidates for each
market in a parallel fashion, and then ranks by distance and/or correlation.

Usage

best_matches(data=NULL,
markets_to_be_matched=NULL,
id_variable=NULL,
date_variable=NULL,
matching_variable=NULL,
parallel=TRUE,
warping_limit=1,
start_match_period=NULL,
end_match_period=NULL,
matches=NULL,
dtw_emphasis=1,
suggest_market_splits=FALSE,
splitbins=10,
log_for_splitting=FALSE)

Arguments

data input data.frame for analysis. The dataset should be structured as "stacked" time
series (i.e., a panel dataset). In other words, markets are rows and not columns
– we have a unique row for each area/time combination.

markets_to_be_matched

Use this parameter if you only want to get control matches for a subset of mar-
kets or a single market The default is NULL which means that all markets will
be paired with matching markets

id_variable the name of the variable that identifies the markets

best_matches 3

date_variable the time stamp variable
matching_variable

the variable (metric) used to match the markets. For example, this could be sales
or new customers

parallel set to TRUE for parallel processing. Default is TRUE

warping_limit the warping limit used for matching. Default is 1, which means that a single
query value can be mapped to at most 2 reference values.

start_match_period

the start date of the matching period (pre period). Must be a character of format
"YYYY-MM-DD" – e.g., "2015-01-01"

end_match_period

the end date of the matching period (pre period). Must be a character of format
"YYYY-MM-DD" – e.g., "2015-10-01"

matches Number of matching markets to keep in the output (to use less markets for in-
ference, use the control_matches parameter when calling inference). Default is
to keep all matches.

dtw_emphasis Number from 0 to 1. The amount of emphasis placed on dtw distances, ver-
sus correlation, when ranking markets. Default is 1 (all emphasis on dtw). If
emphasis is set to 0, all emphasis would be put on correlation, which is rec-
ommended when optimal splits are requested. An emphasis of 0.5 would yield
equal weighting.

suggest_market_splits

if set to TRUE, best_matches will return suggested test/control splits based on
correlation and market sizes. Default is FALSE. For this option to be invoked,
markets_to_be_matched must be NULL (i.e., you must run a full match). Note
that the algorithm will force test and control to have the same number of markets.
So if the total number of markets is odd, one market will be left out.

splitbins Number of size-based bins used to stratify when splitting markets into test and
control. Only markets inside the same bin can be matched. More bins means
more emphasis on market size when splitting. Less bins means more emphasis
on correlation. Default is 10.

log_for_splitting

This parameter determines if optimal splitting is based on correlations of the
raw matching metric values or the correlations of log(matching metric). Only
relevant if suggest_market_splits is TRUE. Default is FALSE.

Value

Returns an object of type market_matching. The object has the following elements:

BestMatches A data.frame that contains the best matches for each market. All stats reflect data
after the market pairs have been joined by date. Thus SUMTEST and SUMC-
NTL can have smaller values than what you see in the Bins output table

Data The raw data used to do the matching

MarketID The name of the market identifier

MatchingMetric The name of the matching variable

4 inference

DateVariable The name of the date variable
SuggestedTestControlSplits

Suggested test/control splits. SUMTEST and SUMCNTL are the total market
volumes, not volume after joining with other markets. They’re greater or equal
to the values in the BestMatches file.

Bins Bins used for splitting and corresponding volumes

Examples

Not run:
##---
Find the best matches for the CPH airport time series
##---
library(MarketMatching)
data(weather, package="MarketMatching")
mm <- best_matches(data=weather,

id="Area",
markets_to_be_matched=c("CPH", "SFO"),
date_variable="Date",
matching_variable="Mean_TemperatureF",
parallel=FALSE,
start_match_period="2014-01-01",
end_match_period="2014-10-01")

head(mm$BestMatches)

End(Not run)

inference Given a test market, analyze the impact of an intervention

Description

inference Analyzes the causal impact of an intervention using the CausalImpact package, given a
test market and a matched_market object from the best_matches function. The function returns an
object of type "market_inference" which contains the estimated impact of the intervention (absolute
and relative).

Usage

inference(matched_markets=NULL,
bsts_modelargs=NULL,
test_market=NULL,
end_post_period=NULL,
alpha=0.05,
prior_level_sd=0.01,
control_matches=5,
analyze_betas=FALSE,
nseasons=NULL)

inference 5

Arguments

matched_markets

A matched_market object created by the market_matching function

bsts_modelargs A list() that passes model parameters directly to bsts – such as list(niter = 1000,
nseasons = 52, prior.level.sd=0.1) This parameter will overwrite the values spec-
ified in prior_level_sd and nseasons. ONLY use this if you’re using intricate bsts
settings For most use-cases, using the prior_level_sd and nseasons parameters
should be sufficient

test_market The name of the test market (character)
end_post_period

The end date of the post period. Must be a character of format "YYYY-MM-
DD" – e.g., "2015-11-01"

alpha Desired tail-area probability for posterior intervals. For example, 0.05 yields
0.95 intervals

prior_level_sd Prior SD for the local level term (Gaussian random walk). Default is 0.01. The
bigger this number is, the more wiggliness is allowed for the local level term.
Note that more wiggly local level terms also translate into larger posterior in-
tervals This parameter will be overwritten if you’re using the bsts_modelargs
parameter

control_matches

Number of matching control markets to use in the analysis (default is 5)

analyze_betas Controls whether to test the model under a variety of different values for prior_level_sd.

nseasons Seasonality for the bsts model – e.g., 52 for weekly seasonality

Value

Returns an object of type inference. The object has the following elements:

AbsoluteEffect The estimated absolute effect of the intervention
AbsoluteEffectLower

The lower limit of the estimated absolute effect of the intervention. This is
based on the posterior interval of the counterfactual predictions. The width of
the interval is determined by the alpha parameter.

AbsoluteEffectUpper

The upper limit of the estimated absolute effect of the intervention. This is
based on the posterior interval of the counterfactual predictions. The width of
the interval is determined by the alpha parameter.

RelativeEffectLower

Same as the above, just for relative (percentage) effects
RelativeEffectUpper

Same as the above, just for relative (percentage) effects

TailProb Posterior probability of a non-zero effect

PrePeriodMAPE Pre-intervention period MAPE

DW Durbin-Watson statistic. Should be close to 2.

6 inference

PlotActualVersusExpected

Plot of actual versus expected using ggplot2

PlotCumulativeEffect

Plot of the cumulative effect using ggplot2

PlotPointEffect

Plot of the pointwise effect using ggplot2

PlotActuals Plot of the actual values for the test and control markets using ggplot2

PlotPriorLevelSdAnalysis

Plot of DW and MAPE for different values of the local level SE using ggplot2

PlotLocalLevel Plot of the local level term using ggplot2

TestData A data.frame with the test market data

ControlData A data.frame with the data for the control markets

PlotResiduals Plot of the residuals using ggplot2

TestName The name of the test market

TestName The name of the control market

zooData A zoo time series object with the test and control data

Predictions Actual versus predicted values
CausalImpactObject

The CausalImpact object created

Coefficients The average posterior coefficients

Examples

Not run:
library(MarketMatching)
##---
Analyze causal impact of a made-up weather intervention in Copenhagen
Since this is weather data it is a not a very meaningful example.
This is merely to demonstrate the function.
##---
data(weather, package="MarketMatching")
mm <- best_matches(data=weather,

id="Area",
markets_to_be_matched=c("CPH", "SFO"),
date_variable="Date",
matching_variable="Mean_TemperatureF",
parallel=FALSE,
warping_limit=1, # warping limit=1
dtw_emphasis=0, # rely only on dtw for pre-screening
matches=5, # request 5 matches
start_match_period="2014-01-01",
end_match_period="2014-10-01")

library(CausalImpact)
results <- inference(matched_markets=mm,

test_market="CPH",
analyze_betas=FALSE,
control_matches=5, # use all 5 matches for inference

MarketMatching 7

end_post_period="2015-12-15",
prior_level_sd=0.002)

End(Not run)

MarketMatching Market Matching and Causal Impact Inference

Description

For a given test market find the best matching control markets using time series matching and
analyze the impact of an intervention (prospective or historical). The intervention could be be a
marketing event or some other local business tactic that is being tested. The package utilizes dy-
namic time warping to do the matching and the CausalImpact package to analyze the causal impact.
In fact, MarketMatching is simply a wrapper and workflow for those two packages. MarketMatch-
ing does not provide any functionality that cannot be found in these packages but simplifies the
workflow of using dtw and CausalImpact together. In addition, if you don’t already have a set of
test markets to match, ‘MarketMatching‘ can provide suggested test/control market pairs using the
‘suggest_market_splits‘ option in the ‘best_matches()‘ function. Also, the ‘test_fake_lift()‘ func-
tion provides pseudo prospective power analysis if you’re using the ‘MarketMatching‘ package to
create your test design (i.e., not just doing the post inference).

Details

The MarketMatching package can be used to perform the following analyses:

- For all markets in the input dataset, find the best control markets using time series matching.

- Given a test market and a matching control market (from above), analyze the causal impact of an
intervention.

- Create optimal test/control market splits and run pseudo prospective power analyses.

The package utilizes the dtw package in CRAN to do the time series matching, and the CausalImpact
package to do the inference. (Created by Kay Brodersen at Google). For more information about
the CausualImpact package, see the following reference:

CausalImpact version 1.0.3, Brodersen et al., Annals of Applied Statistics (2015). http://google.github.io/CausalImpact/

The MarketMatching has two separate functions to perform the tasks described above:

- best_matches(): This function finds the best matching control markets for all markets in the input
dataset. If you don’t know the test markets the function can also provide suggested optimized
test/control pairs.

- inference(): Given an object from best_matches(), this function analyzes the causal impact of an
intervention.

- test_fake_lift(): Calculate the probability of a causal impact for fake interventions (prospective
pseudo power).

For more details, check out the vignette: browseVignettes("MarketMatching")

8 MarketMatching

Author(s)

Kim Larsen (kblarsen4 at gmail.com)

Examples

Not run:

##---
Find best matches for CPH
If we leave test_market as NULL, best matches are found for all markets
##---
library(MarketMatching)
data(weather, package="MarketMatching")
mm <- MarketMatching::best_matches(data=weather,

id="Area",
date_variable="Date",
matching_variable="Mean_TemperatureF",
parallel=FALSE,
markets_to_be_matched="CPH",
warping_limit=1, # warping limit=1
dtw_emphasis=1, # rely only on dtw for pre-screening
matches=5, # request 5 matches
start_match_period="2014-01-01",
end_match_period="2014-10-01")

head(mm$Distances)

##---
Analyze causal impact of a made-up weather intervention in Copenhagen
Since this is weather data it is a not a very meaningful example.
This is merely to demonstrate the functionality.
##---
results <- MarketMatching::inference(matched_markets = mm,

test_market = "CPH",
analyze_betas=FALSE,
end_post_period = "2015-10-01",
prior_level_sd = 0.002)

Plot the impact
results$PlotCumulativeEffect

Plot actual observations for test market (CPH) versus the expectation (based on the control)
results$PlotActualVersusExpected

##---
Power analysis for a fake intervention ending at 2015-10-01
The maximum lift analyzed is 5 percent, the minimum is 0 (using 5 steps)
Since this is weather data it is a not a very meaningful example.
This is merely to demonstrate the functionality.
##---
power <- MarketMatching::test_fake_lift(matched_markets = mm,

test_market = "CPH",
end_fake_post_period = "2015-10-01",

roll_up_optimal_pairs 9

prior_level_sd = 0.002,
steps=20,
max_fake_lift=0.05)

Plot the curve
power$ResultsGraph

##---
Generate suggested test/control pairs
##---

data(weather, package="MarketMatching")
mm <- MarketMatching::best_matches(data=weather,

id_variable="Area",
date_variable="Date",
matching_variable="Mean_TemperatureF",
suggest_market_splits=TRUE,
parallel=FALSE,

dtw_emphasis=1, # rely only on correlation for this analysis
start_match_period="2014-01-01",
end_match_period="2014-10-01")

##---
The file that contains the suggested test/control splits
The file is sorted from the strongest market pair to the weakest pair.
##---
head(mm$SuggestedTestControlSplits)

##---
Pass the results to test_fake_lift to get pseudo power curves for the splits.
This tells us how well the design can detect various lifts.
Not a meaningful example for this data. Just to illustrate.
Note that the rollup() function will aggregate the test and control markets.
The new aggregated test markets will be labeled "TEST."
##---
rollup <- MarketMatching::roll_up_optimal_pairs(matched_markets = mm,

synthetic=FALSE)

power <- MarketMatching::test_fake_lift(matched_markets = rollup,
test_market = "TEST",
end_fake_post_period = "2015-10-01",
lift_pattern_type = "constant",
max_fake_lift = 0.1)

End(Not run)

roll_up_optimal_pairs Roll up the suggested test/control optimal pairs for pseudo power
analysis (testing fake lift)

10 roll_up_optimal_pairs

Description

roll_up_optimal_pairs Takes the suggested optimal pairs from best_matches() and aggregates
the data for pseudo power analysis (test_fake_lift()). You run this function and then pass the result
(a matched markets object) to test_fake_lift.

Usage

roll_up_optimal_pairs(matched_markets=NULL,
percent_cutoff=1,
synthetic=FALSE)

Arguments

matched_markets

A matched market object from best_matches.

percent_cutoff The percent of data (by volume) to be included in the future study. Default is 1.
0.5 would be 50 percent.

synthetic If set to TRUE, the control markets are not aggregated so BSTS can determine
weights for each market and create a synthetic control. If set to FALSE then
the control markets are aggregated and each market will essentially get the same
weight. If you have many control markets (say, more than 25) it is recommended
to choose FALSE. Default is FALSE.

Value

Returns an object of type market_matching. The object has the following elements:

BestMatches A data.frame that contains the best matches for each market in the input dataset

Data The raw data used to do the matching

MarketID The name of the market identifier

MatchingMetric The name of the matching variable

DateVariable The name of the date variable
SuggestedTestControlSplits

Always NULL

Examples

Not run:
##---
Generate the suggested test/control pairs
##---
library(MarketMatching)
data(weather, package="MarketMatching")
mm <- best_matches(data=weather,

id="Area",
date_variable="Date",
matching_variable="Mean_TemperatureF",
parallel=FALSE,

test_fake_lift 11

suggest_market_splits=TRUE,
start_match_period="2014-01-01",
end_match_period="2014-10-01")

##---
Roll up the pairs to generate test and control markets
Synthetic=FALSE means that the control markets will be aggregated
-- i.e., equal weighhs in CausalImpact
##---

rollup <- roll_up_optimal_pairs(matched_markets=mm,
percent_cutoff=1,
synthetic=FALSE)

##---
Pseudo power analysis (fake lift analysis)
##---

results <- test_fake_lift(matched_markets=rollup,
test_market="TEST",
lift_pattern_type="constant",
end_fake_post_period="2015-12-15",
prior_level_sd=0.002,
max_fake_lift=0.1)

End(Not run)

test_fake_lift Given a test market, analyze the impact of fake interventions (prospec-
tive power analysis)

Description

test_fake_lift Given a matched_market object from the best_matches function, this function
analyzes the causal impact of fake interventions using the CausalImpact package. The function
returns an object of type "market_inference" which contains the estimated impact of the intervention
(absolute and relative).

Usage

test_fake_lift(matched_markets=NULL,
test_market=NULL,
end_fake_post_period=NULL,
alpha=0.05,
prior_level_sd=0.01,
control_matches=NULL,
nseasons=NULL,
max_fake_lift=NULL,
steps=10,
lift_pattern_type="constant")

12 test_fake_lift

Arguments

matched_markets

A matched_market object created by the market_matching function This param-
eter will overwrite the values specified in prior_level_sd and nseasons. ONLY
use this if you’re using intricate bsts settings For most use-cases, using the
prior_level_sd and nseasons parameters should be sufficient

test_market The name of the test market (character)
end_fake_post_period

The end date of the post period. Must be a character of format "YYYY-MM-
DD" – e.g., "2015-11-01"

alpha Desired tail-area probability for posterior intervals. For example, 0.05 yields
0.95 intervals

prior_level_sd Prior SD for the local level term (Gaussian random walk). Default is 0.01. The
bigger this number is, the more wiggliness is allowed for the local level term.
Note that more wiggly local level terms also translate into larger posterior in-
tervals This parameter will be overwritten if you’re using the bsts_modelargs
parameter

control_matches

Number of matching control markets to use in the analysis (default is 5)

nseasons Seasonality for the bsts model – e.g., 52 for weekly seasonality

max_fake_lift The maximum absolute fake lift – e.g., 0.1 means that the max lift evaluated is
10 percent and the min lift is -10 percent Note that randomization is injected
into the lift, which means that the max lift will not be exactly as specified

steps The number of steps used to calculate the power curve (default is 10)
lift_pattern_type

Lift pattern. Default is constant. The other choice is a random lift..

Value

Returns an object of type matched_market_power. The object has the following elements:

ResultsData The results stored in a data.frame

ResultsGraph The results stored in a ggplot graph

LiftPattern The random pattern applied to the lift

FitCharts The underlying actual versus fitted charts for each fake lift

FitData The underlying actual versus fitted data for each fake lift

Examples

Not run:
library(MarketMatching)
##---
Create a pseudo power curve for various levels of lift
Since this is weather data it is a not a very meaningful example.
This is merely to demonstrate the function.
##---

weather 13

data(weather, package="MarketMatching")
mm <- best_matches(data=weather,

id="Area",
markets_to_be_matched=c("CPH", "SFO"),
date_variable="Date",
matching_variable="Mean_TemperatureF",
warping_limit=1, # warping limit=1
dtw_emphasis=0, # rely only on dtw for pre-screening
matches=5, # request 5 matches
start_match_period="2014-01-01",
end_match_period="2014-10-01")

library(CausalImpact)
results <- test_fake_lift(matched_markets=mm,

test_market="CPH",
lift_pattern_type="constant",
control_matches=5, # use all 5 matches for inference
end_fake_post_period="2015-12-15",
prior_level_sd=0.002,
max_fake_lift=0.1)

End(Not run)

weather Weather dataset

Description

The data was extracted using the weatherData package It contains average temperature readings for
19 airports for 2014.

Usage

weather

Format

A time series dataset with 6,935 rows and 3 variables (19 airports and 365 days):

• Area: Airport code

• Date: Date

• Mean_TemperatureF: Average temperature

Index

∗ datasets
weather, 13

∗ htest
MarketMatching, 7

∗ ts
MarketMatching, 7

best_matches, 2

inference, 4

MarketMatching, 7
MarketMatching-package

(MarketMatching), 7

roll_up_optimal_pairs, 9

test_fake_lift, 11

weather, 13

14

	best_matches
	inference
	MarketMatching
	roll_up_optimal_pairs
	test_fake_lift
	weather
	Index

